Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28709, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590850

RESUMEN

Fungi are an alternative source to animal-based chitin. In fungi, chitin fibrils are strongly interconnected and bound with glucans that justify the unique matrix. The present study aimed to extract chitin and glucans from the mycelium of several wood decay fungal strains in order to obtain flexible materials and to check correlations between chitin content and the mechanical properties of these materials. Five strains were chosen in consideration of their different cell wall chemical composition (high content of α-glucans, ß-glucans or chitin) to evaluate how these differences could influence the mechanical and chemical characteristics of the material. The fungal strains were cultivated in liquid-submerged dynamic fermentation (both flasks and bioreactor). Chitin and glucans were crosslinked with acetic acid and plasticized with glycerol to obtain flexible sheets. Abortiporus biennis, Fomitopsis iberica and Stereum hirsutum strains were found to adapt to produce material with adequate flexibility. The obtained materials were characterized by Thermogravimetric analysis (TGA) for the understanding of the material composition. The material obtained from each species was mechanically tested in terms of tear strength, elongation at break, and Young's modulus.

2.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38383454

RESUMEN

Breast implants are extensively employed for both reconstructive and esthetic purposes. However, the safety of breast implants with textured surfaces has been questioned, owing to a potential correlation with anaplastic large-cell lymphoma and the recurrence of breast cancer. This study investigates the immune response elicited by different prosthetic surfaces, focusing on the comparison between macrotextured and microtextured breast implants. Through the analysis of intraoperatively harvested periprosthetic fluids and cell culture experiments on surface replicas, we demonstrate that macrotextured surfaces elicit a more pronounced chronic-like activation of leucocytes and an increased release of inflammatory cytokines, in contrast to microtextured surfaces. In addition, in vitro fluorescent imaging of leucocytes revealed an accumulation of lymphocytes within the cavities of the macrotextured surfaces, indicating that the physical entrapment of these cells may contribute to their activation. These findings suggest that the topography of implant surfaces plays a significant role in promoting a chronic-like inflammatory environment, which could be a contributing factor in the development of lymphomas associated with a wide range of implantable devices.


Asunto(s)
Implantación de Mama , Implantes de Mama , Neoplasias de la Mama , Linfoma Anaplásico de Células Grandes , Humanos , Femenino , Implantes de Mama/efectos adversos , Linfoma Anaplásico de Células Grandes/etiología , Linfoma Anaplásico de Células Grandes/cirugía
3.
Materials (Basel) ; 16(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37445121

RESUMEN

The employment of breast silicone implants, both in aesthetic and reconstructive medicine, is widespread thanks to their recognized biocompatibility and durability. Some critical situations, for example, in the case of accidental impacts, may induce concerns by potential patients about their use. Dynamic tests reproducing frontal impacts at speeds up to 90 km/h, with anthropomorphic dummies carrying 330 cc prostheses and wearing safety belts, were conducted. Tests showed a significant probability of internal gel loss following implant damage at the highest speed. Moreover, considering that prostheses may remain implanted for many years, the effects of accelerated aging at 37 °C, 60 °C, 75 °C and 90 °C in physiological solution were also investigated. Tensile tests of the shell material and compressive tests of the full prosthesis showed evidence of variation in the prostheses' mechanical characteristics after aging, which affects their stiffness, deformability and strength. These results stress the importance of medical investigations for possible damages of the implanted prostheses in the case of an accident.

4.
ACS Appl Mater Interfaces ; 5(4): 1494-502, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23379332

RESUMEN

The development of polymers that can repair damage autonomously would be useful to improve the lifetime of polymeric materials. To date, limited attention has been dedicated to developing elastomers with autonomic self-healing ability, which can recover damages without need for an external or internal source of healing agents. This work investigates the self-healing behavior of epoxidized natural rubber (ENR) with two different epoxidation levels (25 and 50 mol % epoxidation) and of the corresponding unfunctionalized rubber, cis-1,4-polyisoprene (PISP). A self-adhesion assisted self-healing behavior was revealed by T-peel tests on slightly vulcanized rubbers. A higher epoxidation level was found to enhance self-healing. Self-healing of rubbers following ballistic damages was also investigated. A pressurized air flow test setup was used to evaluate the self-healing of ballistic damages in rubbers. Microscope (OM, SEM, and TEM) analyses were carried out to provide further evidence of healing in the impact zones. Self-healing of ballistic damages was observed only in ENR with 50 mol % epoxidation and it was found to be influenced significantly by the cross-link density. Finally, self-healing of ballistic damages was also observed in ENR50/PISP blends only when the content of the healing component (i.e., ENR50) was at least 25 wt %. From an analysis of the results, it was concluded that a synergistic effect between interdiffusion and interaction among polar groups leads to self-healing in ENR.

5.
ACS Appl Mater Interfaces ; 3(12): 4865-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22087566

RESUMEN

The development of materials with the ability of intrinsic self-repairing after damage in a fashion resembling that of living tissues has important scientific and technological implications, particularly in relation to cost-effective approaches toward damage management of materials. Natural rubbers with epoxy functional groups in the macromolecular chain (ENR) and ethylene-methacrylic acid ionomers having acid groups partially neutralized with metal ions possess self-repairing behavior following high energy impacts. This research investigates the self-repairing behavior of both ENR and ionomers during ballistic puncture test on the basis of their thermal and mechanical properties. Heterogeneous blending of ionomers and ENR have also been used here as a strategy to tune the thermal and mechanical properties of the materials. Interestingly, blends of sodium ion containing ionomer exhibit complete self-repairing behavior, whereas blends of zinc ion containing ionomer show limited mending. The chemical structure studied by FTIR and thermal analysis shows that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. The mobility of rubbery phases along with its interaction to ionomer phase in the blends significantly changes the mending capability of materials. The healing behavior of the materials has been discussed on the basis of their thermal, mechanical, and rheological tests for each materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...